Power spectrum density (PSD) using TMS320C67XX/TMS320C6713 KIT
Aim:To find the Power spectrum density (PSD) using TMS320C67XX/TMS320C6713 KIT
SOFTARE REQUIREMENTS:
Operating System – Windows XP
Constructor - Simulator
Software – Code Composer Studio3.1v, 6713DSK Diagnostics.
HARDARE REQUIREMENTS:
TMS320C6713DSP KIT
USB cable
Power Supply +5v
Procedure:
- Open code composer studio, make sure the DSP kit is turned on.
- Start a new project using ‘project-new’ pull down menu, save it in a separate directory (c:\ccstudio\myprojects) with the name ‘file name. pjt’.
- Add the source file of linear convolution to the project using ‘project-add files to project’ pull down menu.
- Add the linker command file ‘hello. cmd’ (c\ccstudio\tutorials\dsk6713\hello1\hello.cmd)
- Add the run time support library file rts6700.lib c-ccstudio\c6000\cgtools\lib\rts6700.lib)
- Compile program using the ‘project-compile’ pull down menu or by clicking the short cut icon on the left side of program window.
- Build the program using ‘project-build’ pull down menu or by clicking the icon on the left side of the program window.
- Load the program in program memory of DSP chip using the ‘file-load program’ pull down menu.
- To view o/p graphically, select View -graph-time and frequency.
Program:
# include <math.h>
#define PTS128 //# of points for FFT
#define PI 3.14159265358979
typedef struct {float real,imag;}COMPLEX
void FFT(COMPLEX Y, int n); float iobuffer[PTS];
float x1[PTS],x[PTS]; short i;
short buffercount = 0; shaort flag = 0;
COMPLEX w [PTS];
w*/
COMPLEX samples[PTS];
main( )
{
float j,sum=0.0; int n,k,i,a;
for (I = 0 ; i<PTS ; i++)
{
/*FFT prototype*/
/*as input and output buffer*/
/*intermediate buffer*/
/*general purpose index variable */
/*number of new samples in iobuffer*/
/*set to 1 by ISR when iobuffer full*/
/*twiddle constants stored in
/*primary working buffer*/
/*set up twiddle constants in w */
w[i].real = cos(2*PI*i/(PTS*2.0)); /*Re component of twiddle constants*/
w[i].imag =-sin(2*PI*i/(PTS*2.0)); /*Im component of twiddle constants*/
}
/*Input signal X(n) */
for(i=0,j=0;i<PTS;i++)
{
x[i] = sin(2*PI*5*i/PTS); /*Signal x(Fs)=sin(2*PI*f*i/Fs);*/
samples[i].real=0.0;
samples[i].imag=0.0;
}
/*Auto Correlation of X(n)=R(t) */
for(n=0;n<PTS;n++)
{
sum=0;
for(k=0;k<PTS-n;k++)
{
sum=sum+(x[k]*x[n+k]);
}
iobuffer[n] = sum;
}
/*FFT of R(t) */
for(i = 0 ; i < PTS ; i++)
{
/*Auto Correlation R(t)*/
/*swap buffers*/
samples[i].real=iobuffer[i]; /*buffer with new data*/
}
for(i = 0 ; I < PTS ; i++)
samples[i].imag = 0.0; FFT(samples,PTS);
/*Power Spectral Density */
for (i = 0 ; i < PTS ; i++)
{
/*imag components = 0*/ /*call function FFT.c*/
/*compute magnitude*/
x1[i] = sqrt(samples[i].real*samples[i].real
+samples[i].imag*samples[i].imag);
}
} /*end of main*/
FFT SUBPROGRAM
#define PTS 64 /*number of points for FFT*/
typedef struct {float real,imag; }COMPLEX;
extern COMPLEX w[PTS]; /*twiddle constants stored in w*/
void FFT(COMPLEX Y, int N) /*input sample array, # of points*/
{
COMPLEX temp1,temp2; /*Temporary storage variables*/
int i,j,k; /*loop counter variables */
int upper_leg, lower_leg; int leg_diff;
int num_stages = 0; int index, step;
i = 1;
do
{
num_stages += 1;
i= i*2;
}
while (i! = N);
leg_diff = N/2;
lower legs*/
step = (PTS*2)/N;
twiddle.h */
/*index of upper/lower butterfly leg*/
/*difference between upper/lower leg */
/* number of FFT stages (iterations) */
/*index/step through twiddle constant */
/* log(base2) of N points= # of stages */
/* difference between upper &
/* step between values in
for (i= 0;i < num_stages; i++)
{
index = 0;
for (j = 0; j < leg_diff; j++)
{
/*for N-point FFT*/
for( upper_leg = j; upper_leg < N; upper_leg += (2*leg_diff))
{
lower_leg = upper_leg+leg_diff;
temp1.real = (Y[upper_leg]).real + (Y[lower_leg]).real;
temp1.imag = (Y[upper_leg]).imag + (Y[lower_leg]).imag;
temp2.real = (Y[upper_leg]).real - (y[lower_leg]).real;
temp2.imag = (Y[upper_leg]).imag - (Y[lower_leg]).imag;
(Y[lower_leg]).real = temp2.real*(w[index]).real
-temp2.imag*(w[index]).imag;
(Y[lower_leg]).imag = temp2.real*(w[index]).imag
+temp2.imag*(w[index]).real;
(Y[upper_leg]).real = temp1.real;
(Y[upper_leg]).imag = temp1.imag;
}
index += step;
}
leg_diff = leg_diff/2; step *= 2;
}
j = 0;
for (i= 1 ; i< (N-1 ); i++) /*bit reversal for resequencing data*/
{
k = N/2;
while (k <= j)
{
j= j - k;
k = k/2;
}
j= j + k;
if (i<j)
{
temp1.real = (Y[j]).real;
temp1.imag = (Y[j]).imag;
(Y[j]).real = (Y[i]).real;
(Y[j]).imag = (Y[i]).imag;
(Y[i]).real = temp1.real;
(Y(i]).imag = temp1.imag;
}
}
return;
}
Precautions:
? Switch ON the computer only after connecting USB cable and make sure the DSP kit is ON.
? Perform the diagnostic check before opening code composer studio.
? All the connections must be tight.
Result : The power density spectrum is obtained and the graphs are plotted.
Viva questions:
1. Define power spectral Density?
2. What is the need for spectral estimation?
3. Determine the power spectrum density?
4. What is the relation between auto correlation & spectral density?
5. Give the estimation of auto correlation function & power density for random Signals?
6. Explain power spectrum estimation using the Bartlett window?
7. Give the formula for PSD?
-
UpdatedFeb 04, 2020
-
Views1,291
Generation of basic signals using MATLAB
Design of FIR filters of Low pass and high pass filter using Matlab commands
Find DFT / IDFT of given DT signal
Implementation of analog IIR low pass and high pass filter for a given sequence
Implementation of FFT of a given sequence
Find frequency response of a given system given in (Transfer Function/ Differential equation form