Removal of noise by auto-correlation/cross-correlation
Aim: To verify the removal of noise by auto correlation/cross correlation.
EQUIPMENT:
PC with windows (95/98/XP/NT/2000).
MATLAB Software.
Theory:
Detection of a periodic signal masked by random noise is of great importance .The noise signal encountered in practice is a signal with random amplitude variations. A signal is uncorrelated with any periodic signal. If s(t) is a periodic signal and n(t) is a noise signal then
Qsn(T)= cross correlation function of s(t) and n(t) Then Qsn(T)=0
Detection of noise by Auto-Correlation:
S(t)=Periodic Signal (Transmitted) , mixed with a noise signal n(t).
Then f(t) is received signal is [s(t ) + n(t) ]
Let Qff(T) =Auto Correlation Function of f(t)
Qss(t) = Auto Correlation Function of S(t)
Qnn(T) = Auto Correlation Function of n(t)
The periodic signal s(t) and noise signal n(t) are uncorrelated
The Auto correlation function of a periodic signal is periodic of the same frequency and the Auto correlation function of a non periodic signal is tends to zero for large value of T since s(t) is a periodic signal and n(t) is non periodic signal so Qss(T) is a periodic where as aQnn(T) becomes small for large values of T Therefore for sufficiently large values of T Qff(T) is equal to Qss(T).
Detection by Cross Correlation:
f(t)=s(t)+n(t)
c(t)=Locally generated signal with same frequency as that of S(t)
T/2
Qfc (t) = Lim 1/T ? [s(t)+n(t)] [ c(t-T)] dt
T--8 -T/2
= Qsc(T)+Qnc(T)
C(t) is periodic function and uncorrelated with the random noise signal n(t). Hence Qnc(T0=0) Therefore Qfc(T)=Qsc(T).
Applications:detection of radar and sonal signals ,detection of cyclical component in brain analysis meterology etc.
Program-1 : auto correlation
clear all
clc
t=0:0.1:pi*4;
s=sin(t);
k=2;
subplot(6,1,1)
plot(s);
title('signal s');
xlabel('t');
ylabel('amplitude');
n = randn([1 126]);
f=s+n;
subplot(6,1,2)
plot(f);
title('signal f=s+n');
xlabel('t');
ylabel('amplitude');
as=xcorr(s,s);
subplot(6,1,3)
plot(as);
title('auto correlation of s');
xlabel('t');
ylabel('amplitude');
an=xcorr(n,n);
subplot(6,1,4)
plot(an);
title('auto correlation of n');
xlabel('t');
ylabel('amplitude');
cff=xcorr(f,f);
subplot(6,1,5)
plot(cff);
title('auto correlation of f');
xlabel('t');
ylabel('amplitude');
hh=as+an;
subplot(6,1,6)
plot(hh);
title('addition of as+an');
xlabel('t');
ylabel('amplitude');
Output:
Program-2: CROSS CORRELATION :
clear all
clc
t=0:0.1:pi*4;
s=sin(t);
k=2;
%sk=sin(t+k);
subplot(7,1,1)
plot(s);
title('signal s');xlabel('t');ylabel('amplitude');
c=cos(t);
subplot(7,1,2)
plot(c);
title('signal c');xlabel('t');ylabel('amplitude');
n = randn([1 126]);
f=s+n;
subplot(7,1,3)
plot(f);
title('signal f=s+n');xlabel('t');ylabel('amplitude');
asc=xcorr(s,c);
subplot(7,1,4)
plot(asc);
title(' correlation of s and c');xlabel('t');ylabel('amplitude');
anc=xcorr(n,c);
subplot(7,1,5)
plot(anc);
title(' correlation of n and c');xlabel('t');ylabel('amplitude');
cfc=xcorr(f,c);
subplot(7,1,6)
plot(cfc);
title(' correlation of f and c');xlabel('t');ylabel('amplitude');
hh=asc+anc;
subplot(7,1,7)
plot(hh);
title('addition of sc+nc');xlabel('t');ylabel('amplitude');
Output:
Result: In this experiment the removal of noise by auto correlation/cross correlation have been verified using MATLAB.
-
UpdatedDec 10, 2019
-
Views3,774
Sampling theorem verification
Finding the even and odd parts of signal/sequence and real and imaginary parts of signal
Auto correlation and cross correlation between signals and sequences
Genaration of various signals and sequences
Computation of unit sample, unit step and sinusoidal response of the given LTI system and verifying its physical reliability and stability properties
Basic operations on Matrices