Finding the even and odd parts of signal/sequence and real and imaginary parts of signal
Aim: Program for finding even and odd parts of signals Using MATLAB Software.
Equipments:
PC with windows (95/98/XP/NT/2000).
MATLAB Software.
1. Even and odd parts of signal program:
close all;
clear all;
t=0:.005:4*pi;
x=sin(t)+cos(t); % x(t)=sint(t)+cos(t)
subplot(2,2,1)
plot(t,x)
xlabel('t');
ylabel('amplitude')
title('input signal')
y=sin(-t)+cos(-t) % y=x(-t)
subplot(2,2,2)
plot(t,y)
xlabel('t');
ylabel('amplitude')
title('input signal with t=-t')
z=x+y
subplot(2,2,3)
plot(t,z/2)
xlabel('t');
ylabel('amplitude')
title('even part of the signal')
p=x-y
subplot(2,2,4)
plot(t,p/2)
xlabel('t');
ylabel('amplitude')
title('odd part of the signal')
2. Even and odd parts of signal program:
%finding Odd and even parts of a signal
clc
clear all
close all
f=input('enter frequency')
T=1/f;
t=0:T/f:T
x=sin(2*pi*f*t)
t1=-fliplr(t)
t1(length(t1))=[]
t2=[t1 t]
x1=zeros(1,length(t2))
i=find(t2==min(t))
x1(i:length(x1))=x
y=fliplr(x1)
xe=(x1+y)*0.5
xo=(x1-y)*0.5
subplot(2,2,1)
plot(t,x)
title('input sequence')
xlabel('time')
ylabel('amplitude')
subplot(2,2,2)
plot(t2,xo)
title('odd part of sequence')
xlabel('time')
ylabel('amplitude')
subplot(2,2,3)
plot(t2,xe)
title('even part of sequence')
xlabel('time')
ylabel('amplitude')
Output:
1.Even and odd parts of sequence program:
t=-4:1:4;
h=[ 2 1 1 2 0 1 2 2 3 ];
subplot(3,2,1)
stem(t,h);
xlabel('time'); ylabel('amplitude');
title('signal');
n=9;
for i=1:9
x1(i)=h(n);
n=n-1;
end
subplot(3,2,2)
stem(t,x1);
xlabel('time'); ylabel('amplitude');
title('folded signal');
z=h+x1
subplot(3,2,3);
stem(t,z);
xlabel('time'); ylabel('amplitude');
title('sum of two signal');
subplot(3,2,4);
stem(t,z/2);
xlabel('time'); ylabel('amplitude');
title('even signal');
a=h-x1;
subplot(3,2,5);
stem(t,a);
xlabel('time'); ylabel('amplitude');
title('difference of two signal');
subplot(3,2,6);
stem(t,a/2);
xlabel('time'); ylabel('amplitude');
title('odd signal');
2.Even and odd parts of sequence program:
clc
clear all
close all
x=[1 2 3]
n=[0 1 3]
n1=-fliplr(n)
n1(length(n1))=[]
n2=[n1 n]
x1=zeros(1,length(n2))
i=find(n2==min(n))
x1(i:length(x1))=x
y=fliplr(x1)
xe=(x1+y)*0.5
xo=(x1-y)*0.5
subplot(2,2,1)
stem(n,x)
title('input sequence')
xlabel('time')
ylabel('amplitude')
subplot(2,2,2)
stem(n2,xo)
title('odd part of sequence')
xlabel('time')
ylabel('amplitude')
subplot(2,2,3)
stem(n2,xe)
title('even part of sequence')
xlabel('time')
ylabel('amplitude')
Output:
ENERGY AND POWER SIGNAL: A signal can be categorized into energy signal or power signal:
Energy signal has a finite energy, 0 < E < 8. And Power=0
Energy signals have values only in the limited time duration.
Example: A signal having only one square pulse is energy signal.
A signal that decays exponentially has finite energy
Energy of Continuous Signals
Energy of Discrete Signals
Power signal has a finite energy, 0 < P < 8. And Energy =8
Example: sine
Power of Continuous Signals
Power of Discrete Signals
% Program to find the energy of signal
clc;
close all;
clear all;
x=[1,2,3];
n=3
e=0;
for i=1:n;
e=e+(x(i).*x(i));
end
% Program to find the energy of signal
clc;
close all;
clear all;
N=2
x=ones(1,N)
for i=1:N
y(i)=(1/3)^i.*x(i);
end
n=N;
e=0;
for i=1:n;
e=e+(y(i).*y(i));
end
% Program to find the power of signal
clc;
close all;
clear all;
N=2
x=ones(1,N)
for i=1:N
y(i)=(1/3)^i.*x(i);
end
n=N;
e=0;
for i=1:n;
e=e+(y(i).*y(i));
end
p=e/(2*N+1);
% Program to find the power of signal
N=input('type a value for N');
t=-N:0.0001:N;
x=cos(2*pi*50*t).^2;
disp('the calculated power p of the signal is');
P=sum(abs(x).^2)/length(x)
plot(t,x);
axis([0 0.1 0 1]);
disp('the theoretical power of the signal is');
Output: P_theory=3/8
Result:
The even and odd parts of signal/sequence and real and imaginary part of signals are calculated and plotted.
-
UpdatedMar 01, 2020
-
Views7,960
Sampling theorem verification
Finding the even and odd parts of signal/sequence and real and imaginary parts of signal
Auto correlation and cross correlation between signals and sequences
Genaration of various signals and sequences
Computation of unit sample, unit step and sinusoidal response of the given LTI system and verifying its physical reliability and stability properties
Basic operations on Matrices