Laplace Transforms
Aim: To perform waveform synthesis using Laplace Transforms of a given signal
Equipment: PC with windows (95/98/XP/NT/2000).
MATLAB Software
Program:
Program for Laplace Transform:
f=t
syms f t;
f=t;
laplace(f)
Program for inverse Laplace Transform
f(s)=24/s(s+8) inverse LT
syms F s
F=24/(s*(s+8));
ilaplace(F)
y(s)=24/s(s+8) inverse LT poles and zeros
Signal syntheses using Laplace Transform for Triangular input:
clear all
clc
t=0:1:5
s=(t);
subplot(2,3,1)
plot(t,s);
u=ones(1,6)
subplot(2,3,2)
plot(t,u);
f1=t.*u;
subplot(2,3,3)
plot(f1);
s2=-2*(t-1);
subplot(2,3,4);
plot(s2);
u1=[0 1 1 1 1 1];
f2=-2*(t-1).*u1;
subplot(2,3,5);
plot(f2);
u2=[0 0 1 1 1 1];
f3=(t-2).*u2;
subplot(2,3,6);
plot(f3);
f=f1+f2+f3;
figure;
plot(t,f);
% n=exp(-t);
% n=uint8(n);
% f=uint8(f);
% R = int(f,n,0,6)
laplace(f);
Output:
Result: In this experiment the Triangular signal synthesized using Laplace Transforms using MATLAB.
-
UpdatedDec 09, 2019
-
Views2,386
Sampling theorem verification
Finding the even and odd parts of signal/sequence and real and imaginary parts of signal
Auto correlation and cross correlation between signals and sequences
Genaration of various signals and sequences
Computation of unit sample, unit step and sinusoidal response of the given LTI system and verifying its physical reliability and stability properties
Basic operations on Matrices