Gaussian Noise
Aim: Estimation of Gaussian density and Distribution Functions.
EQUIPMENT:
PC with windows (95/98/XP/NT/2000).
MATLAB Software
Program-1
Program:
%% Closing and Clearing all
clc;
clear all;
close all;
%% Defining the range for the Random variable
dx=0.01; %delta x
x=-3:dx:3;
[m,n]=size(x);
%% Defining the parameters of the pdf
mu_x=0; % mu_x=input('Enter the value of mean');
sig_x=0.1; % sig_x=input('Enter the value of varience');
%% Computing the probability density function
px1=[];
a=1/(sqrt(2*pi)*sig_x);
for j=1:n
px1(j)=a*exp([-((x(j)-mu_x)/sig_x)^2]/2);
end
%% Computing the cumulative distribution function
cum_Px(1)=0;
for j=2:n
cum_Px(j)=cum_Px(j-1)+dx*px1(j);
end
%% Plotting the results
figure(1)
plot(x,px1);grid
axis([-3 3 0 1]);
title(['Gaussian pdf for mu_x=0 and sigma_x=', num2str(sig_x)]);
xlabel('--> x')
ylabel('--> pdf')
figure(2)
plot(x,cum_Px);grid
axis([-3 3 0 1]);
title(['Gaussian Probability Distribution Function for mu_x=0 and sigma_x=', num2str(sig_x)]);
title('\ite^{\omega\tau} = cos(\omega\tau) + isin(\omega\tau)')
xlabel('--> x')
ylabel('--> PDF')
Ouput:
Result: : Gaussian density and Distribution Functions are estimated.
-
UpdatedDec 10, 2019
-
Views1,755
Sampling theorem verification
Auto correlation and cross correlation between signals and sequences
Finding the even and odd parts of signal/sequence and real and imaginary parts of signal
Genaration of various signals and sequences
Computation of unit sample, unit step and sinusoidal response of the given LTI system and verifying its physical reliability and stability properties
Basic operations on Matrices