Finding the Fourier transform of a given signal and plotting its magnitude and phase spectrum
Aim: To find the Fourier transform of a given signal and plotting its magnitude and phase spectrum
EQUIPMENT:
PC with windows (95/98/XP/NT/2000).
MATLAB Software
Theory:
Program : To compute n-point FFT
Program:
clc;
close all;
clear all;
x=input('enter the sequence');
N=length(x);
n=0:1:N-1;
y=fft(x,N)
subplot(2,1,1);
stem(n,x);
title('input sequence');
xlabel('time index n----->');
ylabel('amplitude x[n]----> ');
subplot(2,1,2);
stem(n,y);
title('output sequence');
xlabel(' Frequency index K---->');
ylabel('amplitude X[k]------>');
Output:
Program: FFT magnitude and Phase plot:
clc
close all
x=[1,1,1,1,zeros(1,4)];
N=8;
X=fft(x,N);
magX=abs(X),phase=angle(X)*180/pi;
subplot(2,1,1)
plot(magX);
grid
xlabel('k')
ylabel('X(K)')
subplot(2,1,2)
plot(phase);
grid
xlabel('k')
ylabel('degrees')
Output:
Program: This program finds the Fourier Transform of exp(-At)
Defining the Time domain signal x(t)=exp(-At)
A=input('enter the constant of decay')
T=input('énter the increment for time axis')
T1=input('enter the upper bound for time axis')
t=0:T:T1;
x=exp(-A*t);
w=t
w1=-fliplr(w)
w2=[w1 w]
%Defining Fourier Transform
ft=x*exp(-i*t'*w)*T;
%Magnitude of Fourier Transform
a=abs(ft);
a1=fliplr(a)
a2=[a1 a]
%computing phase spectrum
p=angle(ft);
p1=-fliplr(p)
p2=[p1 p]
subplot(3,1,1)
plot(t,x)
xlabel('time')
ylabel('amplitude')
grid
title('The given exponential signal')
subplot(3,1,2)
plot(w2,a2)
xlabel('frequency')
ylabel('amplitude')
grid
title('Magnitude Spectrum')
subplot(3,1,3)
plot(w2,p2)
xlabel('frequency')
ylabel('phase angle')
grid
title('Phase Spectrum ')
RESULT
enter the constant of decay 1
A = 1
énter the increment for time axis 0.01
T = 0.0100
enter the upper bound for time axis 10
T1 =10
Output:
Result: In this experiment the Fourier transform of a given signal and plotting its magnitude and phase spectrum have been demonstrated using matlab.
-
UpdatedMar 03, 2020
-
Views3,885
Sampling theorem verification
Auto correlation and cross correlation between signals and sequences
Finding the even and odd parts of signal/sequence and real and imaginary parts of signal
Genaration of various signals and sequences
Computation of unit sample, unit step and sinusoidal response of the given LTI system and verifying its physical reliability and stability properties
Verification of Linearity and time in-variance properties of a given continuous/discrete system