Find and plot the cumulative distribution and probability density functions of a random variable
AIM: To find and plot the cumulative distribution and probability density functions of a given random variable.
OBJECTIVE: To find the cumulative distribution and probability density functions of a given random variable.
EQUIPMENT:
PC with windows (95/98/XP/NT/2007).
MATLAB Software
Plot the CDF of discrete random variable:
PROGRAM:
px1=[0.1 0.2 0.1 0.5 0.1]
x1=[3 5 6 8 9]
x=1:max(x1)
P1=zeros(1,length(x))
for j=1:length(x)
for k=1:length(x1)
if x(j)==x1(k)
P1(j)=px1(k)
end
end
end
k=0
for i=1:length(x)
Fx(i)=k+P1(i)
k=Fx(i)
end
disp(Fx)
subplot(2,1,1)
stem(x,P1)
axis([0 10 0 1])
subplot(2,1,2)
stairs(x,Fx)
axis([0 10 0 1.5])
OUTPUT:
px1 =
0.1000 0.2000 0.1000 0.5000 0.1000 0
x1 =
3 5 6 8 9 12
Fx
Columns 1 through 12
0 0 0 0.1000 0.1000 0.3000 0.4000 0.4000 0.9000 1.0000 1.0000 1.0000
Column 13
1.0000
Plot the PDF of discrete random variable:
PROGRAM:
x=[3 5 6 8 10]
Fx=[0.3 0.4 0.9 1 1]
f1=zeros(1,min(x));
x1=[0:min(x)-1 x]
Fx1=[f1 Fx]
for i=2:length(x1);
Px(1)=Fx1(1);
Px(i)=Fx1(i)-Fx1(i-1);
end
disp('px')
disp(Px)
subplot(2,1,1)
stairs(x1,Fx1)
xlabel('x1')
ylabel('Fx1')
title('CDF of x')
axis([0 10 0 1.1])
subplot(2,1,2)
stem(x1,Px)
xlabel('x1')
ylabel('Px')
title('pdf of x')
axis([0 10 0 1])
OUTPUT:
x =
3 5 6 8 10
Fx =
0.3000 0.4000 0.9000 1.0000 1.0000
x1 =
0 1 2 3 5 6 8 10
Fx1 =
0 0 0 0.3000 0.4000 0.9000 1.0000 1.0000
px
0 0 0 0.3000 0.1000 0.5000 0.1000 0
RESULT: Thus cumulative distribution and probability density functions of a given random variable are plotted
OUTCOME: The Student must be able to understand how to find the cumulative distribution to probability density functions of a given random variable using MATLAB
-
UpdatedMar 03, 2020
-
Views1,006
Sampling theorem verification
Finding the even and odd parts of signal/sequence and real and imaginary parts of signal
Auto correlation and cross correlation between signals and sequences
Genaration of various signals and sequences
Computation of unit sample, unit step and sinusoidal response of the given LTI system and verifying its physical reliability and stability properties
Basic operations on Matrices