Checking a Random process for stationarity in wide sense
AIM: Checking a random process for stationarity in wide sense.
EQUIPMENTS:
PC with windows (95/98/XP/NT/2000).
MATLAB Software
Theory: A stationary process is a stochastic process whose joint probability distribution does not change when shifted in time or space. As a result, parameters such as the mean and variance. If they exist, also do not change over time or position.
MATLAB PROGRAM:
clear all
clc
y = randn([1 40])
my=round(mean(y));
z=randn([1 40])
mz=round(mean(z));
vy=round(var(y));
vz=round(var(z));
t = sym('t','real');
h0=3;
x=y.*sin(h0*t)+z.*cos(h0*t);
mx=round(mean(x));
k=2;
xk=y.*sin(h0*(t+k))+z.*cos(h0*(t+k));
x1=sin(h0*t)*sin(h0*(t+k));
x2=cos(h0*t)*cos(h0*(t+k));
c=vy*x1+vz*x1;
%if we solve "c=2*sin(3*t)*sin(3*t+6)" we get c=2cos(6)
%which is a constant does not depend on variable 't'
% so it is wide sense stationary
CONCLUSION: In this experiment the checking a random process for stationary in wide sense have been verified using MATLAB
VIVA QUESTIONS
1. Define Signal.
Ans: Signal is function of one or more variables to convey information.
2. Define deterministic and Random Signal.
Signal that can be modeled exactly by a mathematical formula is known as deterministic signal.Random signals are random variables which evolve, often with time (e.g. audio noise), but also with distance (e.g. intensity in an image of a random texture), or sometimes another parameter.

UpdatedFeb 02, 2020

Views1,293
Sampling theorem verification
Finding the even and odd parts of signal/sequence and real and imaginary parts of signal
Genaration of various signals and sequences
Basic operations on Matrices
Computation of unit sample, unit step and sinusoidal response of the given LTI system and verifying its physical reliability and stability properties
Auto correlation and cross correlation between signals and sequences