Basic operations on Matrices
Aim: To generate matrix and perform basic operation on matrices Using MATLAB Software.
EQUIPMENTS:
- PC with windows (Windows 7/8/10).
- MATLAB Software
Theory:
%Creating a vector from a Known list of numbers:
A=input('enter the Matrix/Vector Elements')
enter the Matrix/Vector Elements 1 2 3 4
Result:
A = 1 2 3 4
%Creating a vector with constant spacing by specifying the first term, spacing and the last term:
m=input('enter the first term')
q=input('enter the spacing')
%Default value of q is 1
n=input('enter the last term')
B=[m:q:n]
Result:
enter the first term m =2
enter the spacing q = 0.1000
enter the last term n =4
B =
column 1 to 12
2. 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3. 3.1
column 13 to 21
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.
%Creating a vector with constant spacing by specifying the first and the last terms, and the number of terms:
a=input('enter the first element')
b=input('enter the last element')
c=input('enter the number of elements')
C=linspace (a,b,c)
Result:
enter the first element a =3.
enter the last element b =6.
enter the number of elements c =5.
C = 3. 3.75 4.5 5.25 6
% Creating an All Zero Vector
m=input('enter the number of terms in the vector')
D=zeros(1,m)
Result:
enter the number of terms in the vector m =5.
D =0 0 0 0 0
% Creating a Vector consisting of all Ones
n=input('enter the number of terms in the vector')
E=ones(1,n)
Result:
enter the number of terms in the vector n =6.
E =1 1 1 1 1 1
% Measuring the size(number of elements) of the vector
A=[1 2 3 4]
l=length(A)
Result:
A =1 2 3 4
l = 4.
% Measuring the order of the vector
D= [1 1 1 1 1]
p=size (D)
Result:
D =1 1 1 1 1
p =1 5
disp('The number of rows is')
The number of rows is
disp(p(1))
Result: 1.
disp('The number of columns is')
The number of columns is
disp(p(2))
Result: 5.
% Transpose of a Matrix
A=[1 2 3 4]
A1=A'
Result:
A = 1. 2. 3. 4.
A1 =
1.
2.
3.
4.
% Multiplying each element of the vector/Matrix with a constant
k=input('enter the value of the Multiplying Constant')
B=[3 4 5 6]
B1=k*B
Result:
k =3.
B =3. 4. 5. 6.
B1 =9. 12. 15. 18.
%The above Multiplication operation can be done also as follows:
B11=k.*B
% Finding the sum of elements of a Matrix
A=[1 2.1 3.3 4]
S=sum(A)
Result:
A =1. 2.1 3.3 4.
S =10.4
B =
1. 2. 3.
4. 5. 6.
7. 8. 9.
S1=sum(B)
Result:
S1 = 45.
%Finding the sum of each row and displaying in a column
S2=sum(B, 'c')
Result:
S2 =
6.
15.
24.
% Finding the sum of each column and displaying in a row
S3=sum(B, 'r')
Result:
S3 =
12. 15. 18.
% Finding the average of the elements of Matrix
B=[2 3 4 5]
Ave=mean(B)
Result:
B =2. 3. 4. 5.
Ave =3.5
%Finding the maximum and minimum values of a vector
A=[1 2 3 10.1 -1]
A1=max(A)
A2=min(A)
Result:
A =1. 2. 3. 10.1 - 1.
A1 =10.1
A2= -1
%Finding the product of the elements of a Matrix
A=[1 2 3 4]
P=prod(A)
Result:
A =1. 2. 3. 4.
P =24.
% Checking the sign of the elements of a Matrix
B=[-1 -2 3 4 -5 0]
S=sign(B)
% sign(B) returns 1 if the element of B is +ve, -1 if the element is –ve and zero if the element is zero
Result:
B =
- 1. - 2. 3. 4. - 5. 0.
S =
- 1. - 1. 1. 1. - 1. 0.
% Finding the non zero elements of the Matrix
A=[-1 2 0 0 2 3]
S=find(A)
% find(A) returns the indices of the non- zero elements of A
Result:
A = -1. 2. 0. 0. 2. 3.
S =1. 2. 5. 6.
% Arranging the elements of a Matrix in ascending/descending order
A=[1 23 45 6 73]
A1=sort(A,’ascend’)
Result:
A =1. 23. 45. 6. 73.
A1 =1. 6. 23. 45. 73.
% mtlb_sort(A) also will do the same
A2=sort(A, ’descend’)
Result:
A2= 73. 45. 23. 6. 1.
%Reshaping the Matrix
A=[1 2 3 4]
A1=matrix(A,4,1)
A2=A(:)
A3=matrix(A,2,2)
Result:
A =1. 2. 3. 4.
A1 =A2=
1.
2.
3.
4.
A3 =
1. 3.
2. 4.
% Extending the Dimension of the Matrix
A=[1 2 3]
%Appending a Row
A(2,:)=[4 5 6]
Result:
A =1. 2. 3.
A =1. 2. 3.
4. 5. 6.
%%Appending a Column
A=[1 2 3]
A(:,4)= 10
Result:
A = 1. 2. 3. 10.
%Deleting the elements of a Matrix
A=[1 2 3 4]
A =1. 2. 3. 4.
% Deleting the 4th column element
A(4)=[ ]
Result:
A =1. 2. 3.
%Arithmetic operations
%Addition of Two row matrices
A=[1 2 3]
B=[5 6 7]
S=A+B
D=A-B
Result:
A =1. 2. 3.
B =5. 6. 7.
S =6. 8. 10.
D = -4. -4. -4.
%Multiplication of Two Matrices
A=[1 2 3]
B=[2;3;4]
C=A*B
Result:
A =1. 2. 3.
B =
2.
3.
4.
C =20
% Element wise Multiplication
A=[1 2 3]
B=[3 4 5]
C=A.*B
Result:
A =1. 2. 3.
B =3. 4. 5.
C =3. 8. 15.
%Element wise Division
A=[1 2 3]
B=[3 4 5]
C=A./B
Result:
A =1. 2. 3.
B =4. 4. 6.
C =0.25 0.4 0.5
C1=A.\B
Result:
C1=3. 2. 1.6666667
%Raising each element of the matrix to 3rd power
A=[2 5 8]
B=A.^3
Result:
A =2. 5. 8.
B =8. 125. 512.
%Relational Operators
A=[1 2 3]
B=[5 3 1]
K=A>B
K1=A<B
Result:
A =1. 2. 3.
B =5. 3. 1.
K = F F T
K1=T T F
A=[1 2 3]
B=[1 3 3]
K=A<=B
K1=A>=B
K2=A==B
Result:
A =1. 2. 3.
B =1. 3. 3.
K = T T T
K1=T F T
K2=T F T
A=[1 2 3]
B=[1 3 3]
K=A~=B( not equal to)
Result:
A = 1. 2. 3.
B = 1. 3. 3.
K = F T F
%Logical Operators
A=[1 2 3]
B=[2 0 4]
K=A|B
K1=A&amp;amp;B
Result:
A =1. 2. 3.
B =2. 0. 4.
x =T T T
y =T F T
A=[1 0 3]
K=~A
Result:
A=1. 0. 3.
K =F T F
%These Programs explain various (MxN) Matrix Operations:
%Creating a One-Dimensional Array/Vector:
A=input('enter the Matrix Elements')
Result:
enter the Matrix Elements[1 2 3;4 5 6;7 8 9]
A =
1. 2. 3.
4. 5. 6.
7. 8. 9.
%creating a Matrix consisting of all zeros
A=zeros(3,2)
A =
0. 0.
0. 0.
0. 0.
%creating a Matrix consisting of all Ones
B=ones(4,2)
Result:
B =
1. 1.
1. 1.
1. 1.
1. 1.
%Creating an Identity Matrix
A=eye(3,3)
Result:
A =
1. 0. 0.
0. 1. 0.
0. 0. 1.
%Measuring the order of the vector
A=[1 2 3;4 5 6;2 3 -1]
p=size(A)
Result:
A =
1. 2. 3.
4. 5. 6.
2. 3. -1.
p= 3. 3.
disp('The number of rows is')
Result:
The number of rows is
disp(p(1))
Result:
3.
disp('The number of columns is')
Result:
The number of columns is
disp(p(2))
Result:
3.
%Transpose of a Matrix
A=[1 2 3 ;10 11 12; 34 45 89]
A1=A'
Result:
A =
1. 2. 3.
10. 11. 12.
34. 45. 89.
A1 =
1. 10. 34.
2. 11. 45.
3. 12. 89.
%Multiplying each element of the Matrix with a constant
k=input('enter the value of the Multiplying Constant')
B=[3 4 5 6;2 4 6 8]
B1=k*B
Result:
enter the value of the Multiplying Constant
k =4
B =
3. 4. 5. 6.
2. 4. 6. 8.
B1 =
12. 16. 20. 24.
8. 16. 24. 32.
%The above Multiplication operation can be done also as follows:
B11=k.*B
%Finding the sum of element of a Matrix
A=[1 2 ;3 4;5 6]
S=sum(A)
Result:
A =
1. 2.
3. 4.
5. 6.
S =21.
%Finding the average of the elements of Matrix
B=[2 3 4;4 5 6]
Ave=mean(B)
Result:
B =
2. 3. 4.
4. 5. 6.
Ave =
4.
%Finding the maximum and minimum values of a vector
A=[1 2 3; 10 2 -1]
A1=max(A)
A2=min(A)
P=prod(A)
Result:
A =
1. 2. 3.
10. 2. -1.
A1 =10.
A2 = -1.
P = -120.
%Checking the sign of the elements of a Matrix
B=[-1 -2 3;4 -5 0]
S=sign(B)
%sign(B) returns 1 if the element of B is +ve, -1 if the element is –ve and zero if the element is zero
Result:
B =
-1. -2. 3.
4. -5. 0.
S =
-1. -1. 1.
1. -1. 0.
%Finding the non zero elements of the Matrix
A=[-1 2 0; 0 2 3]
S=find(A)
%find(A) returns the indices of the non- zero elements of A
Result:
A =
-1. 2. 0.
0. 2. 3.
S = 1. 3. 4. 6.
% checking a matrix whether is empty or not
A=[1 2 3 0]
K= isempty(A)
%isempty() returns a true value for an empty matrix
Result:
A =
1. 2. 3. 0.
K = F
%Arranging the elements of a Matrix in ascending/descending order
A=[1 23 45; 6 7 3]
A1=sort(A,’descend’)
%each column of A is sorted
Result:
A =
1. 23. 45.
6. 7. 3.
A1 =
6. 23. 45.
1. 7. 3.
A1=sort(A, ‘ascend’)
%each row of A is sorted
Result:
A1=
45. 23. 1.
7. 6. 3.
%all the elements of A are sorted in increasing order
A1 =
1. 6. 23.
3. 7. 45.
% all the elements of A are sorted in decreasing order
A1=sort(A, ‘desccend’)
A1 =
45. 7. 3.
23. 6. 1.
%Reshaping the Matrix
A=[1 2 3 4;3 5 6 7]
A1=matrix(A,4,2)
A2=matrix(A,1,8)
Result:
A =
1. 2. 3. 4.
3. 5. 6. 7.
A1 =
1. 3.
3. 6.
2. 4.
5. 7.
A2 =
1. 3. 2. 5. 3. 6. 4. 7.
%Extending the Dimension of the Matrix
A=[1 2 3;4 5 6]
%Appending a Row
A(3,:)=[10 15 26]
Result:
A= 1. 2. 3.
4. 5. 6.
A =
1. 2. 3.
4. 5. 6.
10. 15. 26.
%Appending a Column
A(:,4)=[10;20;87]
A= 1. 2. 3. 10.
4. 5. 6. 20.
10. 15. 26. 87.
%Appending an Intermediate row
A=[1 2 3;4 5 6;7 8 9]
A =
1. 2. 3.
4. 5. 6.
7. 8. 9.
%Appending a row between 1st and 2nd rows
A=[A(1,:); 10 11 12;A(2,:);A(3,:)]
Result:
A =
1. 2. 3.
10. 11. 12.
4. 5. 6.
7. 8. 9.
%Appending a column between 2nd and 3rd column
A=[1 2 3;4 5 6;7 8 9]
A=[A(:,1) A(:,2) [10;12;15;16] A(:,3)]
Result:
A =
1. 2. 10. 3.
10. 11. 12. 12.
4. 5. 15. 6.
7. 8. 16. 9.
%Deleting the row/column of a Matrix
A=[1 2 3; 4 5 6]
%Deleting the 2nd row
A(2,:)=[ ]
Result:
A =
1. 2. 3.
4. 5. 6.
A =
1. 2. 3.
%Deleting the 2nd column
A=[1 2 3; 4 5 6]
A(:,2)=[ ]
Result:
A =
1. 2. 3.
4. 5. 6.
A =
. 3.
4. 6.
%Arithmetic operations
%Addition of Two row matrices
A=[1 2 3;4 5 6]
B=[5 6 7;10 11 12]
S=A+B
D=A-B
Result:
A =
1. 2. 3.
4. 5. 6.
B =
5. 6. 7.
10. 11. 12.
S =
6. 8. 10.
14. 16. 18.
D =
-4. -4. -4.
-6. -6. -6.
%Multiplication of Two Matrices
A=[1 2 3;4 5 6]
B=[5 6 3;10 11 12;3 4 6]
C=A*B
Result:
A =
1. 2. 3.
4. 5. 6.
B =
5. 6. 3.
10. 11. 12.
3. 4. 6.
C =
34. 40. 45.
88. 103. 108.
%Element wise Multiplication
A=[1 2 3;4 5 6]
B=[3 4 5;3 2 1]
C=A.*B
Result:
A =
1. 2. 3.
4. 5. 6.
B =
3. 4. 5.
3. 2. 1.
C =
3. 8. 15.
12. 10. 6.
%Element wise Division
C=A./B
Result:
C =
0.3333 0.5000 0.6000
1.3333 2.5000 6.0000
%Raising each element of the matrix to 4th power
A=[2 5 8;4 5 6]
B=A.^4
Result:
A =
2. 5. 8.
4. 5. 6.
B =
16. 625. 4096.
256. 625. 1296.
%Relational Operators
A=[1 2 3;10 3 5]
B=[5 3 1;0 3 6]
K=A>B
x=A<B
y=A<=B
K1=A>=B
K2=A==B
K3=A~=B
Result:
A =
1. 2. 3.
10. 3. 5.
B =
5. 3. 1.
0. 3. 6.
K =
F F T
T F F
x =
T T F
F F T
y =
T T F
F T T
K1 =
F F T
T T F
K2 =
F F F
F T F
K3 =
T T T
T F T
%Logical Operators
A=[1 2 3;0 0 1;1 -1 0]
B=[2 0 4;-1 2 -3;9 8 0]
K=A|B
K1=A&amp;B
Result:
A =
1. 2. 3.
0. 0. 1.
1. -1. 0.
B =
2. 0. 4.
-1. 2. -3.
9. 8. 0.
K =
T T T
T T T
T T F
K1 =
T F T
F F T
T T F
A=[1 0 3;2 -1 0;3 2 -1]
K=~A/k=not(A)
Result:
A =
1 0 3
2 -1 0
3 2 -1
K =
F T F
F F T
Viva Questions:
1. What is the command to generate row matrix?
R=[a,b,c]
2. What is the command to generate column matrix?
colvec = [a ; b ; c]
3. What is the command to generate matrix?
matrix=[1,2,3;4,5,6;7,8,9]
4. What is the command to find Inverse matrix?
Inverse_matrix= Inv(m).
-
UpdatedFeb 12, 2020
-
Views4,721
Sampling theorem verification
Finding the even and odd parts of signal/sequence and real and imaginary parts of signal
Auto correlation and cross correlation between signals and sequences
Genaration of various signals and sequences
Computation of unit sample, unit step and sinusoidal response of the given LTI system and verifying its physical reliability and stability properties
Basic operations on Matrices